Christian
Pander
The egg in the first 5 days of incubation
1817
Introduction
The asterisk * indicates that the item is present in lexicon
[7]
INTRODUCTIO. |
INTRODUCTION |
Quamquam jam
antea eorum fere omnium, qui de incubatis ovis aliquid literis
mandaverunt, ut in enarrandis factis ingens discrepantia, ita
mirificus consensus in enumerandis hujus disquisitionis
difficultatibus nos curiosos reddiderant; tamen brevi {tempora}
<tempore> nostra ipsorum experientia satis superque nos docuit,
quanta soleat natura iis, qui ejus interiorem in officinam penetrare
conantur, impedimenta objicere, quantis praesertim nebulis dicam an
tenebris? suum in animantibus procreandis artificium offundere et
velare consueverit. Nihil igitur antiquius habendum decrevimus, quam,
magna ovorum copia adhibenda, eorum diversis temporibus diverso statu
qua possemus maxima cum subtilitate inspiciendo et sub censuram
vocando eo anniti, ut primum crebra omnium observationum repetitione
[8] in contemplandis naturae miraculis magis magisque adsuesceremus;
deinde ut ne minima minimo quidem temporis momento facta in foetu
immutatio aciem nostram falleret aut effugeret; postremo autem, ut, si
quid veri dignoscere visi nobis essemus, similium experimentorum
cumulo a dubitatione ad veritatem adduceremur, vel ab omni errore, ex
festinatione forsitan orto, revocaremur. |
Even
if already previously made me curious not only the enormous
discrepancy in expounding the facts, but also the extraordinary
approval in listing the difficulties of this treatise of almost all
those people that wrote something about the incubated eggs,
nevertheless in a short time the experience we have done of them has
shown us sufficiently and as an extra how many impediments the nature
is usual to oppose to those people who try to penetrate in its most
intimate laboratory; furthermore, with how many clouds or shadows, I
should say, it has been usual to darken and to dim its clever
technique in producing living beings? Therefore I decided to have to
consider nothing more important of the fact, by employing a great
amount of eggs, by examining with the greatest depth allowed to us
their condition in different moments, and submitting it to a rigorous
screening, to strain us in first place by availing us on the frequent
repetition of all the observations, to get more always used to the
contemplation of all the prodigies of nature; in second place to do so
that not even the least change, happened in the embryo in a very brief
instant, was deceiving or avoiding our watchful attention; finally
then so that, if it seemed us to detect some truth, we were driven
from the doubt to the truth thanks to the sum of the similar
experiments, or at least we were distracted from any type of error,
probably risen because of the hurry. |
Ad
haec omnia exsequenda jam non a gallinis ova incubanda, sed illius
machinae ope fovenda curavimus, quae ab Hollmannio[1]
inventa, a Blumenbachio divulgata est et collaudata. Hoc igitur
apparatu usi, eodem tempore ad quadraginta ova temperare potuimus. Si
quis autem contra hujus machinae usum moneat, quod contramoneri possit,
non aptam esse eam ad temporis momenta accurate denotanda; ei obsistit
hoc, quod tantum non omnes, qui in incubatorum ovorum naturam
inquisiverunt, in eo consentiunt, quod a gallinis ipsis incubita ova
tempore maxime dispari animari dicant. Ceterum pulli, qui, usque dum
excluderentur, in machina relicti erant, constanter vigesimo primo
quoque die in lucem sunt editi. |
To
do all these operations we have not made the eggs brooded by hens, but
we incubated them with the help of that equipment invented by Hollmann
and spread and tested by Johann
Friedrich Blumenbach*. Then,
by using this equipment, we have been able to keep about forty eggs at
constant temperature. But if someone intended to criticize the use of
this equipment, since that a criticism can be advanced because it is
not proper in pointing out with precision the times of the execution,
it can be objected to him that nearly all those people that devoted
their researches to nature of the incubated eggs, are almost all
agreeing on the fact to say that just the incubated eggs by the hens
in general take life in very different moments. On the other hand the
chicks, left in the equipment until the moment of the exit from the
egg, regularly came to the light at twenty first day. |
[9] Ceterum
observavimus, incubatui infra 28° R. et supra 32° R. locum non esse;
tum singulorum momentorum, quae in omni harum mutationum serie
deprehenduntur, celerius tardiusve subsequentium causam non in majori
minorive caloris gradu, sed in ipsorum ovorum natura et conditione
positam esse; deinde quo recentiora ova adposita sint, eo certius
evolutionem succedere. |
Then
we observed that the brooding was not possible below 28 and above 32 Réaumur*
degrees (<35 and 40 Celsius degrees>); furthermore, that the
cause of the single movements, felt in any order of these mutations,
and happening as soon as possible or more later, must be sought not in
the greater or lesser degree of heat, but in the nature and in the
condition of the eggs; in second place, how much more recent is the
laying of the eggs, so much more sure is their evolution. |
Hac, quam
demonstravimus, via etsi amplius duorum millium ovorum commutationcs
observavimus, recensuimus, perscrutati sumus; tamen persuasum nobis
est, ne hanc quidem experimentorum abundantiam ad eam nobis rei
cognitionem parandam, quam re vera paravit, suffecisse, nisi jucunda
illa studiorum nostrorum conjunctio acccssisset. Cum enim nihil omnino
pro certo ratoque haberemus, quin unusquisque nostrum idem saepe esset
eodem modo expertus, cognovisset idem, idem evidentissime sibi ipse
probasset: singula experimenta, quae enarravimus, ut quasi tergemina
ducenda sunt, ita unius anni et quod excurrit, qui in hanc
disquisitionem impensus iabor est, quasi integrum triennium exhaustum
[10] dicendum est. |
With
the demonstration we have given of this, although our observation, our
examination, our evaluation are extended to the changes occurred in
more than two thousand eggs, nevertheless the conviction is formed in
us that neither this abundance of experiments would have been enough
to give us the knowledge of the phenomenon,
that actually was brought to us, unless there had been a welcome
addition, the well-known communality of our studies.
Since in fact we didn't have the absolute certainty that
everyone of us had often carried out in the same way the same
experimentation, had gotten the same knowledge, had reached with the
greatest evidence the same personal demonstration: as the single
experiments, that we have commented, have to be considered, so to say,
triplex for affinity, so we have to inform that for them the time of
one year has been employed and almost the whole following triennium, a
labour that was not indifferent to the goals of this search. |
Prae ceteris
autem maxima ad hujusmodi studia e quotidianis colloquiis redundare
commoda intelleximus. Familiarium enim sermonum nostrorum beneficio
accidit, ut aut subito deprehenderemus, an omnes pari modo de facto
aliquo et loqueremur et sentiremus, aut errores cito eorumque sedes
apparerent, aut tandem in novam aliquam observandi discendique viam
incideremus et quasi conjunctis viribus ad veritatem adspiraremus.
Illud ipsum, quod hinc inde nostrum alius aliud in iisdem studiis
quaereret; unus rerum claram et distinctam notionem vel exemplar
potius, quod possit arte sua reddere; alter anatomicarum quarundam et
physiologicarum idearum vel approbationem, vel repetitionem; tertius
denique eventum qualemcunque secure et sine omni praeoccupationis
cupiditate exspectaret: haec ipsa, inquam, consiliorum nostrorum
diversitas magnum nobis attulit adjumentum. Nemini enim nostrum justo
citius progredi licuit, neque unquam praeceptis caruimus, quae in ipsa
investigatione constituenda sequeremur, multo minus a vero, quod idem
semper et unum est, aberrare potuimus. |
However
above every thing we have understood that, subsequently to daily talks,
advantages are poured on studies of such kind. In fact thanks to our
private discussions it happened that we were immediately becoming
aware, if everybody in the same way both spoke and thought some
phenomenon, or if errors and their location soon were manifested, or
finally if we came upon some new method of observation and learning,
and, so to say, with united strengths we were aiming at the truth.
Just this, that starting from this point, the one of us investigated
in a way, the other one in another way about the same studies, the one
the clear and distinct knowledge of the phenomena or rather a model,
he was able to reproduce with his professionalism; the other a
demonstration or a repetition of some anatomical and physiological
notions; a third finally waited with calmness and without any
premonitory thirst the result, of whatever kind it was: this same
difference, I say, of our intentions has been for us of considerable
help. In fact to no one of us it would have been permissible to
advance more quickly than it was correct, neither we ever accused the
lack of rules to follow in constituting the real method of
investigation, so much less we would have been able to grow apart of
the truth, which is always only one. |
[11] Sic
omnia consilia nostra studiorum sobrietate, tranquillitate atque
assiduitate temperata quasi sunt et ad fines quosdam perducta. |
Thus
all of our intentions have been, so to say, harmonized by sobriety,
serenity and continuity of the studies and addressed to certain aims. |
Neque enim
reticendum putamus, ea nos teneri spe, fore, ut multum bonae frugis
inesse nostrae commentationi judicetur. Uti enim summa cum alacritate
et voluntate optima ad rem agendam accessimus; ita res acta nobis
videtur voluntatem nostram et exspectationem paene totam sustinuisse.
Verum enim vero omnibus ex partibus assequi, quae vel institueramus,
vel optaveramus, nobis non contigit. Cum enim non solum universam, qua
pulli oriantur et succrescant, rationem penitus evolvere atque
explicare apud animum nostrum constituissemus , sed etiam singulas
ovique et pulli ipsius partes perscrutari, earumque deinceps factas
mutaciones ad unam omnes recensere essemus et describere conati: ramen
brevi jntelleximus, patere tanti ambitus commentationem tam late, ut
neque otii nostri esset ea res, neque posset, nisi multorum annorum
continuo labore, absolvi. Quibus de causis quaestionem nostram ad hanc
legem revocare debebamus, ut in hoc de [12] variis ovi incubati
permutationibus libello pulli corpus ipsum tanquam unum quoddam ac
simplum considerantes, singulas, quibus constat, particulas minus
respiciamus. Item non placuit, omnes partium, quibus ovi natura
conflata est, vicissitudines persequi, addita tamen eorum narratione,
quae obiter a nobis sunt observata. Etenim licet nihil eorum, quae ad
cognoscenda varia avis in ovo evolutionis momenta pertineant,
praetermisimus: tamen separatis singulorum organorum disquisitionibus
non tantum curae atque industriae tribuere licuit, quantum ad omnes
errores declinandos requiri videbatur. Quamobrem cum potius nihil
mallemus, quam incerta et obscura tradere, non pauca censuimus apud
nos reservanda. Quapropter etiam necesse non fuit, ovi incubati
descriptionem ultra quintum diem producere. Hoc enim tempore peracto,
cum omnium partium fundamenta jacta sint, nihil magnopere memorabile
fieri cognovimus. Sunt igitur ea, quae hoc loco disputata et praecepta
sunt, quaeque vera esse observationibus nostris probatum diximus, suis
illa quidem finibus ac numeris absoluta, ita tamen comparata, [13] ut
facile quis sua hoc in genere inventa adjungere deinceps atque
adnectere queat. Quid? quod nostrum fortasse ipsorum unus vel alter, (quandoquidem
in praesentia dulcis consuetudo nostra fato quodam tristi dissolvitur,)
ea posthac augebit atque amplificabit; nihil etiam impedit, quo minus
ne alius quispiam, denuo pertractatis, quae a nobis instituta sunt,
utilem aeque hanc ac gravem doctrinam sibi deligat propagandam. Ad
quem finem quoniam non parum facit, cum rerum apparatum tum omnes
agendi operandique et rationes et subsidia cognita habere; addemus
earum rerum descriptionem, quibus ipsi usi sumus, quasque alii nostram
viam ingressuri non sine magna utilitate usurpabunt. |
Neither
in fact we think to have to pass under silence the fact that we are
motivated by the hope that it is judged that in our treatment there is
a lot of good result. In fact, as we approached to the treatment with
the greatest ardor and the best good wish, so it seems us that the
treatment has almost totally supported our intention and our
expectation. But in truth we have not been blessed with achieving
among all aspects those results we had proposed or we had wished. In
fact, since we intimately decided not only to examine and to explain
in depth the cause for which the chicks hatch and develop, but also to
appraise one by one the single components of the egg and of the chick
itself, and we had tried time by time to pass in review and to
describe the mutations singly occurred in the eggs, however we shortly
realized that a treatment of so wide wideness covers such a great
extension that neither that task was part of the availability of our
leisure, nor it could be executed, only with many years of
uninterrupted labour. Because of these reasons we would have submit
our search to such condition, that in this little book regarding the
various changes of the incubated egg, in examining the organism itself
of the chick as unitary and simple at all, we devoted less
consideration to the single parts, by which it is composed. Equally we
didn't like to appraise all the transformations of the parts, by which
the nature of the egg is composed, added however the explanation of
those phenomena by us incidentally observed. Really, although we not
neglected no one of those observations concerning the various phases
of the evolution of the bird in the egg, nevertheless it would not
have been possible to devote so much care and task to the isolated
treatment of the single organs which seemed required for avoiding all
the errors. Therefore, although everything seemed preferable to us
rather than to profess uncertain and dark doctrines, we decided to
hold back more than a few conclusions near us. For this reason it was
also not necessary to prolong the description of the incubated egg
after the fifth day. In fact, this period passed, after the
foundations of all the parts were laid, we recognized that nothing of
remarkable attention was happening. Insofar those reflections,
discussed and you anticipated at this point, and that, as we said,
have been shown as true by our observations, however have been put
together in such way, that someone easily could be able each time to
add and to connect his own discoveries in this field. What to say of
the fact that perhaps one or another of ourselves (since at the
present moment our sweet company is dissolved by a very sad destiny),
subsequently will increase and will widen those results? Besides
nothing prevents that somebody else, after having re-examined what had
been examined by us, chooses the task of divulging these theories so
useful as authoritative. Since to such purpose not few is useful to be
perfectly known, not only the explanation of the facts but also all
the aids and benefits of acting and operating; besides the description
of those events, which we ourselves have used, and that others
intentioned to walk our way will employ not without great profit. |
Ovum
incubatum vero omne non aliter, nisi aqua superfusa aperiendum est:
fiat hoc sub calida, cum de systemate vasorum ac sanguine agatur. Qui
autem non massas in ovo contentas considerare, sed in solam rationem,
qua foetus gignatur, animi attentionem convertere et ante quintum
incubationis diem ovum inspicere statuerunt, curandum iis inprimis id
est, ut blastoderma, quippe in quo et per [14] quod omnes foetus
immutationes fiant, nudum et ab omnibus aliis partibus separatum
obtineant. Hoc fieri potest, si circa cicatriculam, vel
formatis jam vasis sanguiferis, circa sinum terminalem, membranae
vitelli segmentum exsecetur; quo facto ab immersa in aquam membrana
vitelli blastoderma sponte quasi, quod adhaeserat, solet recedere.
Jamque ad hoc ipsum necesse est microscopiorum varia genera, nunc
minus nunc magis augentia, nunc simplicia nunc composita admoveas.
Quodsi velis vel sola oculorum acie, vel simplici eaque magnae
potestatis lente adjutus, ad rem ingredi; id cura, ut blastoderma in
aquam, ut ante dictum est, immissum, solo quodam nigro superimpositum
sit. Nobis quidem ad hunc finem id genus vasorum vitreorum magno fuit
usui, quibus horologia minora obtegere solemus. Haec deinde parvulis
quibusdam ollis, ad hunc ipsum usum ab opifice effictis et nigro
interiori parte colore obductis, imposuimus. Quando porro, quod tum
maxime fiet, ubi embryonem voles artis instrumentis aggredi, margines
blastodermatis distendendi tibi veniunt; catilli minuti, cera nigra
obducti, vel ad [15] subtilissimas membranas cxplicandas religandasque
erunt accommodatissimi. Illa, quae supra diximus, horologiorum vitrea
praestant hoc quoque, ut embryonem, iis impositum, cum nigro super
solo amplius eum contemplare nolueris, possis microscopiis compositis,
quae fere nonnisi ab ima parte lucem admittunt, minimo cum negotio
submittere. Horumque ipsorum microscopiorum porro maxima cum utilitate
tua eliges, quae quam latissimum visionis campum praebeant. Accidit
denique illud quoque, ut sepositis his instrumentis ad unius simplicis
lentis usum, eumque in parvis efficacissimum, aciem tuam debeas
revocare. |
In
truth every brooded egg must be opened only by pouring water above:
this must be done with warm water, since it deals with the circulatory
system and the blood. But who decided not to consider the masses
contained in the egg, but to address the attention of his mind only to
the cause provoking the birth of the fetus, and to examine the egg
before the fifth day of incubation, first of all he must take care of
maintaining the blastoderma (<envelop of the embryo?>) bare and
separated from all the other parts, since in it and through it all the
transformations of the fetus are happening. This is possible, if a
portion of the membrane of the yolk is cut near the small cicatrix or,
having formed by now the blood vessels, near the terminal ansa; when
this is done, the blastoderma, which had stuck to it, almost
spontaneously withdraws from the membrane of the yolk soaked in the
water. And by now, to observe just this phenomenon, it is necessary to
put near it various kinds of microscopes, more or less magnifying, now
simple now complex. But if it is wanted to examine the event or only
with the sharpness of the sight or with a simple lens and besides of
great power, we have to do so that the blastoderma, soaked, as it was
said before, in the water, is placed on a plan of black colour. Truly
to us to this purpose it was of great utility that kind of glass
holders, by which we are usual to protect the smaller clocks. Then we
set them on some small saucepans, built by an artisan just in sight of
this employment and internally smeared of black colour. When besides,
a thing that will happen above all when you will handle the embryo
with the professional tools, the borders of the blastoderma have to be
stretched, very small dishes will be very suitable, covered of black
wax, also to stretch the membranes and to connect them among them.
Those containers of glass that, as we previously told, serve to
protect the clocks, they also allow this, to be able to set, with the
least effort, the embryo placed on them – if it was not wanted to be
observed for a longer time on a plan of black colour – under the
complex microscopes, receiving only the light from the inferior side.
You will choose besides with maximum your utility the greatest of
these same microscopes, that can offer you the visual field as wider
as possible. It also occurs finally this, that having separated these
tools to reduce them to the employment of one only simple lens, and
moreover of extreme effectiveness when it is a matter of small objects,
our own visual sharpness has to be summoned. |
Omnis vero
haec solertia, in arte posita, ad ea tantum ova pertinet, quae nondum
ad quintum diem incubatui tradita sunt. Quo tcmporis spatio elapso,
quia totum fere studium in membranis pcrlustrandis versari debet, eo
prosperiore successu gaudebis, quo cautius ab omni, si rarissimum
forficis usum excipias, acutorum instrumentorum auxilio abstinueris.
Ex aqua vero superfusa ne tum quidem, inter operandum, retrahas pullum.
Placet hoc adjicere, e periculis nonnullis, quibus [16] reagentia
quaedam remedia in ova adhibuimus, nihil nobis esse magnae allatum
utilitatis. |
In
truth this whole diligence, consisting in the professional practice,
concerns only those eggs not yet transferred to the brooding within
the fifth day. But after this time period, since almost all the study
has to deal to examine the membranes, we will enjoy such a happier
success, how much greater will be the prudence by which we will
renounce any help of pointed tools, with a very rare exception about
the use of the scissors. In truth the chick has not to be excluded
from a sprinkle of water poured from above neither then, during the
operations. I like to add that any great utility has not been brought
by some experiments, by which we applied some therapies reacting in
the eggs. |
Etsi non
omnia, quae de ovo incubato literis tradita sunt, ad manus fuerint,
tamen multa a nobis, aut plurima diligenter percognita sunt; fructus
tamen inde tenuis, ut verum fateamur, perceptus. |
Although
not all the written doctrines about the incubated egg have been
available, nevertheless a lot of them have been known by us, or many
of them carefully; nevertheless, to say the truth a modest fruit has
been obtained. |
In tanta enim
auctorum, qui de ovo incubato egerunt, copia pauci inveniuntur, qui
vera et utilia docuerint. Eminet inter hos Marcellus Malpighius qui in
sua "de Formatione pulli in ovo {disserrtatione}
<dissertatione> epistolica," nec non in "appendice
repetitas auctasque de ovo incubato observationes continente"
praestantissimas nobis reliquit delineationes, licet nimis brevi
explicatione illustratas. |
In
fact in a so great abundance of writers, who treated about the
incubated egg, few are found who gave authentic and useful teachings.
Among these Marcello Malpighi* is standing out, who in his epistolary
dissertation «De formatione pulli in ovo*» and moreover in «Appendix de ovo incubato*»
left us very excellent drawings, although illustrated with a too much
short explanation. |
Non
minoris momenti sunt, quae nos summus Albertus de Haller[2]
docuit. "Sur la Formation du coeur dans le poulet. Premier
{Memoire} <Mémoire>. Exposé des faits. Second {Memoire} <Mémoire>.
Précis des observations
suivi de reflexions sur le {developpement} <développement>."
et postea "Commentarius de Formatione cordis in ovo
incubato." Omnem tamen [17] laudem superant egregiae Wolffii[3]
observationes, quae partim in libro "Theoria generationis"
partim in suo "de Formatione intestinorum" Tractatu,
Commentariorum Academiae Scientiarum Imperialis Petropolitanae Tomo
XII et XIII inserto, inveniuntur. |
Of
not smaller importance they are the teachings given by the excellent
Albert de Haller. «Sur la Formation du coeur dans le poulet. Premier Mémoire. Exposé
des faits. Second Mémoire. Précis des observations suivi de réflexions
sur le développement», and afterwards «Commentarius de Formatione
cordis in ovo incubato». Nevertheless superior to every praise are the excellent observations of Kaspar Friedrich Wolff, partly in the book «Theoria generationis»,
partly in his treatise «De Formatione intestinorum», inserted in the
tomes XII and XIII of the Commentaria Academiae Scientiarum of
Saint Petersburg. |
Quod vero
aream vasculosam spectat et memoratu dignissimam in illa circulationem
sanguinis, solus Spallanzani[4]
eas rite cognovit: "De' Fenomeni della Circolazione." In
Modena 1773. |
But
about the vascular area and the circulation of the blood in it, very
deserving to be remembered, only Lazzaro Spallanzani adequately
knew them: «De’ Fenomeni della Circolazione». In Modena, 1773. |
Nec
reticere licet observationes accuratas Viri Clarissimi Comitis de
Tredern[5]:
"Dissertatio inauguralis medica sistens ovi avium historiae et
incubationis prodromum." |
And
it is not allowed to pass under silence the accurate observations of a
very illustrious man as the count Louis Sébastien Marie de Tredern: «Dissertatio inauguralis medica sistens ovi avium historiae et
incubationis prodromum». |
[1]
Elio
Corti – Forse
si tratta di Samuel Christian Hollmann (* 3. Dezember 1696 in Stettin; † 4. September 1787 in Göttingen) war ein
deutscher Philosoph und Naturforscher.
[2]
Elio Corti
- Albrecht von Haller o Albert de Haller (Berna, 16 ottobre 1708 –
Berna, 12 dicembre 1777) è stato un medico e poeta svizzero.
[3]
Elio Corti
- Kaspar Friedrich Wolff: embriologo tedesco (Berlino 1733 - Pietroburgo
1794). Su invito di Caterina di Russia, si recò a Pietroburgo (1764) dove insegnò anatomia e fisiologia. Nel
1759 pubblicò Theoria generationis,
opera in cui sono contenuti i fondamenti della moderna embriologia. Fu il
primo assertore in epoca moderna della teoria embriologica dell’epigenesi,
da lui esposta nel 1759 in Theoria generationis, secondo la quale
l'embrione si sviluppa gradatamente, a partire da un germe
indifferenziato, con la comparsa successiva di parti dell'organismo nuove
per morfologia e struttura. Wolff è dunque in contrasto con la teoria
all’epoca prevalente del preformismo, secondo la quale nel germe (uovo o
spermatozoo) si trova già precostituito in miniatura, con tutte le sue
parti, l'individuo adulto. Da citare quanto segue: Canale
di Wolff = uretere primario, il canale collettore del pronefro che
si apre nella cloaca. È detto anche dotto. Creste
di Wolff = pieghe presenti sui lati dell'embrione, da cui si
svilupperanno gli abbozzi degli arti.Isolotti
di Wolff = ammassi di cellule mesenchimatiche che si costituiscono
sulle pareti del sacco vitellino embrionale, dai quali deriveranno i primi
vasi sanguiferi e le prime cellule del sangue.
[4]
Elio Corti
- Lazzaro Spallanzani (Scandiano, Reggio Emilia, 12 gennaio
1729 – Pavia, 11 febbraio 1799) è stato un gesuita e biologo italiano,
considerato il "padre scientifico" della fecondazione
artificiale; è ricordato soprattutto per aver confutato la teoria della
generazione spontanea con un esperimento che verrà successivamente
ripreso e perfezionato dal chimico e biologo francese Louis Pasteur (Dole,
27 dicembre 1822 – Marnes-la-Coquette, 28 settembre 1895). Lazzaro
nacque da Gian Nicola e da Lucia Zigliani; a quindici anni entrò nel
collegio dei Gesuiti di Reggio Emilia, dove seguì i corsi di Filosofia e
di Retorica. All'Università di Bologna compì gli studi di Diritto, ma
abbandonò poco dopo tale facoltà per dedicarsi alla Filosofia Naturale,
laureandosi in Biologia nella medesima Università, avendo come insegnante
la biologa Laura Bassi. Successivamente continuò a studiare Biologia,
specializzandosi in Zoologia e Botanica in vari atenei Francesi. Esordì
come scienziato con le Lettere due
sopra un viaggio nell’Appennino Reggiano e al lago di Ventasso,
riguardanti il problema dell’origine delle sorgenti. Nel 1757 insegnò
greco nel Seminario e fisica e matematica all’Università di Reggio
Emilia. Nel 1762 prese gli ordini sacerdotali e nel 1763 si trasferì a
Modena, dove insegnò filosofia e retorica all’Università e matematica
e greco presso il Collegio San Carlo di Modena. Nel novembre del 1769 fu
chiamato all'Università di Pavia per insegnarvi Storia Naturale (carica
che tenne fino alla morte) e assunse la direzione del Museo
dell’Università, di cui fu rettore nell’anno 1777-1778. Sin dal 1771
era riuscito a creare un Museo di Storia Naturale, che nel corso degli
anni acquistò una grande fama, anche internazionale, e fu visitato
perfino dall'imperatore Giuseppe II d'Austria. Effettuò numerosi viaggi,
fra quelli celebri a Costantinopoli (1785-86) e nelle Due Sicilie (1788),
durante i quali realizzò anche importanti osservazioni in ambito
geologico. Nel 1785, mentre era in un viaggio a Costantinopoli e nei
Balcani, fu accusato dal custode del Museo di Pavia (sobillato da alcuni
colleghi) di aver rubato reperti del Museo: la vicenda si concluse dopo un
anno con la dimostrazione della completa innocenza di Spallanzani e la
condanna dei calunniatori. Morì nella notte tra l'11 e il 12 febbraio
1799 nella sua abitazione di Pavia. Oltre al Museo di Pavia, Spallanzani
costituì nella sua casa di Scandiano una raccolta privata, che oggi si
trova nei Musei Civici di Reggio Emilia. La sua opera resta legata ad
esperienze e scoperte di eccezionale importanza, che portarono a negare in
primo luogo la generazione spontanea negli infusori. Scoprì inoltre il
succo gastrico, compì studi notevoli sulla fecondazione e ammise per via
sperimentale l'esistenza degli scambi gassosi respiratori nel sangue.
Assai notevoli anche i suoi studi sulla respirazione. Nel 1761 iniziò a
interessarsi della generazione spontanea, il principale problema allora
discusso dai naturalisti, e, dopo quattro anni di ricerca, nel Saggio
di Osservazioni Microscopiche sul Sistema della Generazione de’ Signori
di Needham e Buffon (1765), riuscì a determinarne
l’infondatezza. Egli preparò degli infusi e li sterilizzò facendoli
bollire per più di un'ora. Alcuni di questi infusi erano contenuti in
recipienti di vetro sigillati alla fiamma. Spallanzani notò che in questi
contenitori non si verificava crescita batterica (l'infuso non si
intorbidiva né era possibile osservare microrganismi al microscopio).
Questo lavoro lo fece conoscere in tutta Europa. Nel 1768 si interessò
della circolazione sanguigna e su questo argomento pubblicò Dell’azione
del cuore nei vasi sanguigni. Tra il 1777 e il 1780 approfondì il
problema della riproduzione e fin dal 1777 ottenne la prima fecondazione
artificiale, usando uova di rana e rospo. Raccolse i risultati dei propri
esperimenti in Dissertazioni di
fisica animale e vegetale. Si dedicò, inoltre, a ricerche inerenti
alla digestione e alla respirazione. Le sue ricerche di fisologia
gastroenterologica furono fondamentali nel dimostrare come il processo
digestivo non consista solo nella semplice triturazione meccanica del
cibo, ma anche in un processo di azione chimica a livello gastrico,
necessario per permettere l'assorbimento dei nutrienti. Un cratere di 72,5
km di diametro sul pianeta Marte è stato chiamato col suo nome. A
Scandiano gli è dedicata una piazza e un monumento dello scultore
Guglielmo Fornaciari, inaugurato il 21 ottobre 1888 e l'omonimo
Osservatorio astronomico. --- § Lazzaro Spallanzani (10 January 1729 –
12 February 1799) was an Italian Catholic priest, biologist and
physiologist who made important contributions to the experimental study of
bodily functions, animal reproduction, and essentially discovered
echolocation. His
research of biogenesis paved the way for the investigations of Louis
Pasteur. He was born in Scandiano in the modern province of Reggio Emilia
and died in Pavia, Italy. Spallanzani was educated at the Jesuit College
and started to study law at the University of Bologna, which he gave up
soon and turned to science. Here, his famous kinswoman, Laura Bassi, was
professor of physics and it is to her influence that his scientific
impulse has been usually attributed. With her he studied natural
philosophy and mathematics, and gave also great attention to languages,
both ancient and modern, but soon abandoned them. In 1754, at the age of
25 he became professor of logic, metaphysics and Greek in the University
of Reggio. In 1762 he was ordained as a priest, 1763 he was moved to
Modena, where he continued to teach with great assiduity and success, but
devoted his whole leisure to natural science. He declined many offers from
other Italian universities and from St Petersburg until 1768, when he
accepted the invitation of Maria Theresa to the chair of natural history
in the university of Pavia, which was then being reorganized. He also
became director of the museum, which he greatly enriched by the
collections of his many journeys along the shores of the Mediterranean Sea.
In June 1768 Spallanzani was elected a Fellow of the Royal Society and in
1775 was elected a foreign member of the Royal Swedish Academy of Sciences.
In 1785 he was invited to Padua University, but to retain his services his
sovereign doubled his salary and allowed him leave of absence for a visit
to Turkey where he remained nearly a year and made many observations,
among which may be noted those of a copper mine in Chalki and of an iron
mine at Principi. His return home was almost a triumphal progress: at
Vienna he was cordially received by Joseph II and on reaching Pavia he was
met with acclamations outside the city gates by the students of the
university. During the following year his students exceeded five hundred.
His integrity in the management of the museum was called in question, but
a judicial investigation speedily cleared his honour to the satisfaction
even of his accusers. In 1788 he visited Vesuvius and the volcanoes of the
Lipari Islands and Sicily, and embodied the results of his researches in a
large work (Viaggi alle due Sicilie
ed in alcune parti dell'Appennino), published four years later. He
died from bladder cancer on the 12th of February 1799, in Pavia. After his
death, his bladder was removed for study by his colleagues, after which it
was placed on public display in a museum in Pavia, Italy, where it remains
to this day. His indefatigable exertions as a traveller, his skill and
good fortune as a collector, his brilliance as a teacher and expositor,
and his keenness as a controversialist no doubt aid largely in accounting
for Spallanzani's exceptional fame among his contemporaries; his letters
account for his close relationships with many famed scholars and
philosophers, like Buffon, Lavoisier, and Voltaire. Yet greater qualities
were by no means lacking. His life was one of incessant eager questioning
of nature on all sides, and his many and varied works all bear the stamp
of a fresh and original genius, capable of stating and solving problems in
all departments of science — at one time finding the true explanation of
stone skipping (formerly attributed to the elasticity of water) and at
another helping to lay the foundations of our modern volcanology
and meteorology. Spallanzani was a Catholic who researched the theory
about the spontaneous generation of cellular life in 1768. His experiment
suggested that microbes move through the air and that they could be killed
through boiling. Critics of Spallazani's work argued his experiments
destroyed the "life force" that was required for spontaneous
generation to occur. His work paved the way for later research by Louis
Pasteur, who defeated the theory of spontaneous generation. He also
discovered and described animal (mammal) reproduction, showing that it
requires both semen and an ovum. He was the first to perform in vitro
fertilization, with frogs, and an artificial insemination, using a dog.
Spallanzani showed that some animals, especially newts, can regenerate
some parts of their body if injured or surgically removed. Spallanzani is
also famous for extensive experiments on the navigation in complete
darkness by bats, where he concluded that bats use sound and their ears
for navigation in total darkness (see animal echolocation). He was the
pioneer of the original study of echolocation, though his study was
limited to what he could observe. Later scientists moved onto studies of
the sensory mechanisms and processing of this information. His great work,
however, is the Dissertationi di
fisica animale e vegetale (2 vols, 1780). Here he first interpreted
the process of digestion, which he proved to be no mere mechanical process
of trituration - that is, of grinding up the food - but one of actual
chemical solution, taking place primarily in the stomach, by the action of
the gastric juice. He also carried out important researches on
fertilization in animals (1780).
[5]
Elio Corti
- Louis Sébastien Marie de Tredern de Lézerec, né à Brest le 14
septembre 1780, fils de Jean Louis, a d’abord présenté une thèse
remarquée sur le développement embryonnaire du poulet (Dissertatio
inauguralis medica sistens ovi avium historiae et incubationis prodromum,
etc. Ludovicus Sebastianus M. comes ab Tredern. Iena, 1808) à l’Université
d’Iéna (Allemagne) en 1808. Revenu en France, il a ensuite soutenu à
Paris en 1811 une thèse de doctorat en médecine, également très
remarquée, sur l’organisation et la salubrité des hôpitaux. Ensuite
on a perdu sa trace et des informations recueillies par le Professeur A.
de Quatrefages (Muséum de Paris), publiées et reprises par plusieurs
historiens des sciences et de la médecine depuis la fin du 19ème siècle,
ont indiqué que le Dr de Tredern serait devenu médecin de marine et se
serait fixé à la Guadeloupe où il aurait fondé un hôpital. La date et
le lieu de son décès restent inconnus. Nous avons tout récemment pu
retrouver la trace de Tredern à Paris, où il fut sous-bibliothécaire économe
à la Bibliothèque Mazarine (dont l’administrateur, Petit-Radel, avait
été membre de son jury de thèse) en 1816 et 1817. Il obtint un congé
en 1817 pour aller régler des affaires familiales à la Guadeloupe. Sa présence
dans l’île est attestée en 1822, il y sonda la cavité de la source
thermale de la Ravine-Chaude. Ensuite, est-il revenu à Paris ? Il figure
dans la liste des médecins experts assermentés auprès de la cour royale,
de 1822 à 1835, d’après l’Almanach Royal. Ce dernier donne son
adresse à la Bibliothèque Mazarine alors qu’il y a été remplacé en
1820 dans ses fonctions antérieures. Puis on perd de nouveau sa trace.
Mais un traité de médecine sur la fièvre jaune publié en 1828 indique
que le Dr Tredern et le Dr Pépin seraient morts de cette maladie à Port
Louis, sans préciser de date (en fait entre 1822 et 1828 ?). Pourrait-on
savoir, d’une part, s’il a réellement fondé un hôpital à la
Guadeloupe ou s’il y a travaillé dans un hôpital existant, d’autre
part, s’il est réellement mort à Port Louis, sinon s’il serait
revenu à la Guadeloupe après 1835 ou même avant? (www.ghcaraibe.org)