Aristochick
The chick of Aristotle



History of animals
translated by D'Arcy Wentworth Thompson 1910

VI, 558b

Some birds couple and lay at almost any time in the year, as for instance the barn-door hen and the pigeon: the former of these coupling and laying during the entire year, with the exception of the month before and the month after the winter solstice. Some hens, even in the high breeds, lay a large quantity of eggs before brooding, amounting to as many as sixty; and, by the way, the higher breeds are less prolific than the inferior ones. The Adrian hens are small-sized, but they lay every day; they are cross-tempered, and often kill their chickens; they are of all colours. Some domesticated hens lay twice a day; indeed, instances have been known where hens, after exhibiting extreme fecundity, have died suddenly. Hens, then, lay eggs, as has been stated, at all times indiscriminately; the pigeon, the ring-dove, the turtle-dove, and the stock-dove lay twice a year, and the pigeon actually lays ten times a year.

VI, 559a-562b

2. - The egg in the case of all birds alike is hard-shelled, if it be the produce of copulation and be laid by a healthy hen, for some hens lay soft eggs. The interior of the egg is of two colours, and the white part is outside and the yellow part within.

The eggs of birds that frequent rivers and marshes differ from those of birds that live on dry land; that is to say, the eggs of waterbirds have comparatively more of the yellow or yolk and less of the white. Eggs vary in colour according to their kind. Some eggs are white, as those of the pigeon and of the partridge; others are yellowish, as the eggs of marsh birds; in some cases the eggs are mottled, as the eggs of the guinea-fowl and the pheasant; while the eggs of the kestrel are red, like vermilion.

Eggs are not symmetrically shaped at both ends: in other words, one end is comparatively sharp, and the other end is comparatively blunt; and it is the latter end that protrudes first at the time of laying. Long and pointed eggs are female; those that are round, or more rounded at the narrow end, are male. Eggs are hatched by the incubation of the mother-bird. In some cases, as in Egypt, they are hatched spontaneously in the ground, by being buried in dung heaps. A story is told of a toper in Syracuse, how he used to put eggs into the ground under his rush-mat and to keep on drinking until he hatched them. Instances have occurred of eggs being deposited in warm vessels and getting hatched spontaneously.

The sperm of birds, as of animals in general, is white. After the female has submitted to the male, she draws up the sperm to underneath her midriff. At first it is little in size and white in colour; by and by it is red, the colour of blood; as it grows, it becomes pale and yellow all over. When at length it is getting ripe for hatching, it is subject to differentiation of substance, and the yolk gathers together within and the white settles round it on the outside. When the full time is come, the egg detaches itself and protrudes, changing from soft to hard with such temporal exactitude that, whereas it is not hard during the process of protrusion, it hardens immediately after the process is completed: that is if there be no concomitant pathological circumstances. Cases have occurred where substances resembling the egg at a critical point of its growth-that is, when it is yellow all over, as the yolk is subsequently-have been found in the cock when cut open, underneath his midriff, just where the hen has her eggs; and these are entirely yellow in appearance and of the same size as ordinary eggs. Such phenomena are regarded as unnatural and portentous.

Such as affirm that wind-eggs are the residua of eggs previously begotten from copulation are mistaken in this assertion, for we have cases well authenticated where chickens of the common hen and goose have laid wind-eggs without ever having been subjected to copulation. Wind-eggs are smaller, less palatable, and more liquid than true eggs, and are produced in greater numbers. When they are put under the mother bird, the liquid contents never coagulate, but both the yellow and the white remain as they were. Wind-eggs are laid by a number of birds: as for instance by the common hen, the hen partridge, the hen pigeon, the peahen, the goose, and the vulpanser. Eggs are hatched under brooding hens more rapidly in summer than in winter; that is to say, hens hatch in eighteen days in summer, but occasionally in winter take as many as twenty-five. And by the way for brooding purposes some birds make better mothers than others. If it thunders while a hen-bird is brooding, the eggs get addled. Wind-eggs that are called by some cynosura and uria are produced chiefly in summer. Wind-eggs are called by some zephyr-eggs, because at spring-time hen-birds are observed to inhale the breezes; they do the same if they be stroked in a peculiar way by hand. Wind-eggs can turn into fertile eggs, and eggs due to previous copulation can change breed, if before the change of the yellow to the white the hen that contains wind-eggs, or eggs begotten of copulation be trodden by another cock-bird. Under these circumstances the wind-eggs turn into fertile eggs, and the previously impregnated eggs follow the breed of the impregnator; but if the latter impregnation takes place during the change of the yellow to the white, then no change in the egg takes place: the wind-egg does not become a true egg, and the true egg does not take on the breed of the latter impregnator. If when the egg-substance is small copulation be intermitted, the previously existing egg-substance exhibits no increase; but if the hen be again submitted to the male the increase in size proceeds with rapidity.

The yolk and the white are diverse not only in colour but also in properties. Thus, the yolk congeals under the influence of cold, whereas the white instead of congealing is inclined rather to liquefy. Again, the white stiffens under the influence of fire, whereas the yolk does not stiffen; but, unless it be burnt through and through, it remains soft, and in point of fact is inclined to set or to harden more from the boiling than from the roasting of the egg. The yolk and the white are separated by a membrane from one another. The so-called 'hail-stones', or treadles, that are found at the extremity of the yellow in no way contribute towards generation, as some erroneously suppose: they are two in number, one below and the other above. If you take out of the shells a number of yolks and a number of whites and pour them into a sauce pan and boil them slowly over a low fire, the yolks will gather into the centre and the whites will set all around them.

Young hens are the first to lay, and they do so at the beginning of spring and lay more eggs than the older hens, but the eggs of the younger hens are comparatively small. As a general rule, if hens get no brooding they pine and sicken. After copulation hens shiver and shake themselves, and often kick rubbish about all round them-and this, by the way, they do sometimes after laying-whereas pigeons trail their rumps on the ground, and geese dive under the water. Conception of the true egg and conformation of the wind-egg take place rapidly with most birds; as for instance with the hen-partridge when in heat. The fact is that, when she stands to windward and within scent of the male, she conceives, and becomes useless for decoy purposes: for, by the way, the partridge appears to have a very acute sense of smell.

The generation of the egg after copulation and the generation of the chick from the subsequent hatching of the egg are not brought about within equal periods for all birds, but differ as to time according to the size of the parent-birds. The egg of the common hen after copulation sets and matures in ten days a general rule; the egg of the pigeon in a somewhat lesser period. Pigeons have the faculty of holding back the egg at the very moment of parturition; if a hen pigeon be put about by any one, for instance if it be disturbed on its nest, or have a feather plucked out, or sustain any other annoyance or disturbance, then even though she had made up her mind to lay she can keep the egg back in abeyance. A singular phenomenon is observed in pigeons with regard to pairing: that is, they kiss one another just when the male is on the point of mounting the female, and without this preliminary the male would decline to perform his function. With the older males the preliminary kiss is only given to begin with, and subsequently sequently he mounts without previously kissing; with younger males the preliminary is never omitted. Another singularity in these birds is that the hens tread one another when a cock is not forthcoming, after kissing one another just as takes place in the normal pairing. Though they do not impregnate one another they lay more eggs under these than under ordinary circumstances; no chicks, however, result therefrom, but all such eggs are wind-eggs.

3 - Generation from the egg proceeds in an identical manner with all birds, but the full periods from conception to birth differ, as has been said. With the common hen after three days and three nights there is the first indication of the embryo; with larger birds the interval being longer, with smaller birds shorter. Meanwhile the yolk comes into being, rising towards the sharp end, where the primal element of the egg is situated, and where the egg gets hatched; and the heart appears, like a speck of blood, in the white of the egg. This point beats and moves as though endowed with life, and from it two vein-ducts with blood in them trend in a convoluted course (as the egg substance goes on growing, towards each of the two circumjacent integuments); and a membrane carrying bloody fibres now envelops the yolk, leading off from the vein-ducts. A little afterwards the body is differentiated, at first very small and white. The head is clearly distinguished, and in it the eyes, swollen out to a great extent. This condition of the eyes lat on for a good while, as it is only by degrees that they diminish in size and collapse. At the outset the under portion of the body appears insignificant in comparison with the upper portion. Of the two ducts that lead from the heart, the one proceeds towards the circumjacent integument, and the other, like a navel-string, towards the yolk. The life-element of the chick is in the white of the egg, and the nutriment comes through the navel-string out of the yolk.

When the egg is now ten days old the chick and all its parts are distinctly visible. The head is still larger than the rest of its body, and the eyes larger than the head, but still devoid of vision. The eyes, if removed about this time, are found to be larger than beans, and black; if the cuticle be peeled off them there is a white and cold liquid inside, quite glittering in the sunlight, but there is no hard substance whatsoever. Such is the condition of the head and eyes. At this time also the larger internal organs are visible, as also the stomach and the arrangement of the viscera; and veins that seem to proceed from the heart are now close to the navel. From the navel there stretch a pair of veins; one towards the membrane that envelops the yolk (and, by the way, the yolk is now liquid, or more so than is normal), and the other towards that membrane which envelops collectively the membrane wherein the chick lies, the membrane of the yolk, and the intervening liquid. (For, as the chick grows, little by little one part of the yolk goes upward, and another part downward, and the white liquid is between them; and the white of the egg is underneath the lower part of the yolk, as it was at the outset.) On the tenth day the white is at the extreme outer surface, reduced in amount, glutinous, firm in substance, and sallow in colour.

The disposition of the several constituent parts is as follows. First and outermost comes the membrane of the egg, not that of the shell, but underneath it. Inside this membrane is a white liquid; then comes the chick, and a membrane round about it, separating it off so as to keep the chick free from the liquid; next after the chick comes the yolk, into which one of the two veins was described as leading, the other one leading into the enveloping white substance. (A membrane with a liquid resembling serum envelops the entire structure. Then comes another membrane right round the embryo, as has been described, separating it off against the liquid. Underneath this comes the yolk, enveloped in another membrane (into which yolk proceeds the navel-string that leads from the heart and the big vein), so as to keep the embryo free of both liquids.)

About the twentieth day, if you open the egg and touch the chick, it moves inside and chirps; and it is already coming to be covered with down, when, after the twentieth day is hatched, the chick begins to break the shell. The head is situated over the right leg close to the flank, and the wing is placed over the head; and about this time is plain to be seen the membrane resembling an after-birth that comes next after the outermost membrane of the shell, into which membrane the one of the navel-strings was described as leading (and, by the way, the chick in its entirety is now within it), and so also is the other membrane resembling an after-birth, namely that surrounding the yolk, into which the second navel- string was described as leading; and both of them were described as being connected with the heart and the big vein. At this conjuncture the navel-string that leads to the outer afterbirth collapses and becomes detached from the chick, and the membrane that leads into the yolk is fastened on to the thin gut of the creature, and by this time a considerable amount of the yolk is inside the chick and a yellow sediment is in its stomach. About this time it discharges residuum in the direction of the outer after-birth, and has residuum inside its stomach; and the outer residuum is white (and there comes a white substance inside). By and by the yolk, diminishing gradually in size, at length becomes entirely used up and comprehended within the chick (so that, ten days after hatching, if you cut open the chick, a small remnant of the yolk is still left in connexion with the gut), but it is detached from the navel, and there is nothing in the interval between, but it has been used up entirely. During the period above referred to the chick sleeps, wakes up, makes a move and looks up and Chirps; and the heart and the navel together palpitate as though the creature were respiring. So much as to generation from the egg in the case of birds.

Birds lay some eggs that are unfruitful, even eggs that are the result of copulation, and no life comes from such eggs by incubation; and this phenomenon is observed especially with pigeons.

Twin eggs have two yolks. In some twin eggs a thin partition of white intervenes to prevent the yolks mixing with each other, but some twin eggs are unprovided with such partition, and the yokes run into one another. There are some hens that lay nothing but twin eggs, and in their case the phenomenon regarding the yolks has been observed. For instance, a hen has been known to lay eighteen eggs, and to hatch twins out of them all, except those that were wind-eggs; the rest were fertile (though, by the way, one of the twins is always bigger than the other), but the eighteenth was abnormal or monstrous.

On the generation of animals
translated by Arthur Platt 1910

III, 749b-754a

Some embryos are formed in birds spontaneously, which are called wind-eggs and 'zephyria' by some; these occur in birds which are not given to flight nor rapine but which produce many young, for these birds have much residual matter, whereas in the birds of prey all such secretion is diverted to the wings and wing-feathers, while the body is small and dry and hot. (The secretion corresponding in hen-birds to catamenia, and the semen of the cock, are residues.) Since then both the wings and the semen are made from residual matter, nature cannot afford to spend much upon both. And for this same reason the birds of prey are neither given to treading much nor to laying many eggs, as are the heavy birds and those flying birds whose bodies are bulky, as the pigeon and so forth. For such residual matter is secreted largely in the heavy birds not given to flying, such as fowls, partridges, and so on, wherefore their males tread often and their females produce much material. Of such birds some lay many eggs at a time and some lay often; for instance, the fowl, the partridge, and the Libyan ostrich lay many eggs, while the pigeon family do not lay many but lay often. For these are between the birds of prey and the heavy ones; they are flyers like the former, but have bulky bodies like the latter; hence, because they are flyers and the residue is diverted that. way, they lay few eggs, but they lay often because of their having bulky bodies and their stomachs being hot and very active in concoction, and because moreover they can easily procure their food, whereas the birds of prey do so with difficulty.

Small birds also tread often and are very fertile, as are sometimes small plants, for what causes bodily growth in others turn in them to a seminal residuum. Hence the Adrianic fowls lay most eggs, for because of the smallness of their bodies the nutriment is used up in producing young. And other birds are more fertile than game-fowl, for their bodies are more fluid and bulkier, whereas those of game-fowl are leaner and drier, since a passionate spirit is found rather in such bodies as the latter. Moreover the thinness and weakness of the legs contribute to making the former class of birds naturally inclined to tread and to be fertile, as we find also in the human species; for the nourishment which otherwise goes to the legs is turned in such into a seminal secretion, what Nature takes from the one place being added at the other. Birds of prey, on the contrary, have a strong walk and their legs are thick owing to their habits, so that for all these reasons they neither tread nor lay much. The kestrel is the most fertile; for this is nearly the only bird of prey which drinks, and its moisture, both innate and acquired, along with its heat is favourable to generative products. Even this bird does not lay very many eggs, but four at the outside.

The cuckoo, though not a bird of prey, lays few eggs, because it is of a cold nature, as is shown by the cowardice of the bird, whereas a generative animal should be hot and moist. That it is cowardly is plain, for it is pursued by all the birds and lays eggs in the nests of others.

The pigeon family are in the habit of laying two for the most part, for they neither lay one (no bird does except the cuckoo, and even that sometimes lays two) nor yet many, but they frequently produce two, or three at the most generally two, for this number lies between one and many.

It is plain from the facts that with the birds that lay many eggs the nutriment is diverted to the semen. For most trees, if they bear too much fruit, wither away after the crop when nutriment is not reserved for themselves, and this seems to be what happens to annuals, as leguminous plants, corn, and the like. For they consume all their nutriment to make seed, their kind being prolific. And some fowls after laying too much, so as even to lay two eggs in a day, have died after this. For both the birds the plants become exhausted, and this condition is an excess of secretion of residual matter. A similar condition is the cause of the later sterility of the lioness, for at the first birth she produces five or six, then in the next year four, and again three cubs, then the next number down to one, then none at all, showing that the residue is being used up and the generative secretion is failing along with the advance of years.

We have now stated in which birds wind-eggs are found, and also what sort of birds lay many eggs or few, and for what reasons. And wind-eggs, as said before, come into being because while it is the material for generation that exists in the female of all animals, birds have no discharge of catamenia like viviparous sanguinea (for they occur in all these latter, more in some, less in others, and in some only enough in quantity just to mark the class). The same applies to fish as to birds, and so in them as in birds is found an embryonic formation without impregnation, but it is less obvious because their nature is colder. The secretion corresponding to the catamenia of vivipara is formed in birds at the appropriate season for the discharge of superfluous matter, and, because the region near the hypozoma is hot, it is perfected so far as size is concerned, but in birds and fishes alike it is imperfect for generation without the seminal fluid of the male; the cause of this has been previously given. Wind-eggs are not formed in the flying birds, for the same reason as prevents their laying many eggs; for the residual matter in birds of prey is small, and they need the male to give an impulse for the discharge of it. The wind-eggs are produced in greater numbers than the impregnated but smaller in size for one and the same reason; they are smaller in size because they are imperfect, and because they are smaller in size they are more in number. They are less pleasant for food because they are less concocted, for in all foods the concocted is more agreeable. It has been sufficiently observed, then, that neither birds' nor fishes' eggs are perfected for generation without the males. As for embryos being formed in fish also (though in a less degree) without the males, the fact has been observed especially in river fish, for some are seen to have eggs from the first, as has been written in the Enquiries concerning them. And generally speaking in the case of birds even the impregnated eggs are not wont for the most part to attain their full growth unless the hen be trodden continually. The reason of this is that just as with women intercourse with men draws down the secretion of the catamenia (for the uterus being heated attracts the moisture and the passages are opened), so this happens also with birds; the residual matter corresponding to the catamenia advances a little at a time, and is not discharged externally, because its amount is small and the uterus is high up by the hypozoma, but trickles together into the uterus itself. For as the embryo of the vivipara grows by means of the umbilical cord, so the egg grows through this matter flowing to it through the uterus. For when once the hens have been trodden, they all continue to have eggs almost without intermission, though very small ones. Hence some are wont to speak of wind-eggs as not coming into being independently but as mere relics from a previous impregnation. But this is a false view, for sufficient observations have been made of their arising without impregnation in chickens and goslings. Also the female partridges which are taken out to act as decoys, whether they have ever been impregnated or not, immediately on smelling the male and hearing his call, become filled with eggs in the latter case and lay them in the former. The reason why this happens is the same as in men and quadrupeds, for if their bodies chance to be in rut they emit semen at the mere sight of the female or at a slight touch. And such birds are of a lascivious and fertile nature, so that the impulse they need is but small when they are in this excited condition, and the secreting activity takes place quickly in them, wind-eggs forming in the unimpregnated and the eggs in those which have been impregnated growing and reaching perfection swiftly.

Among creatures that lay eggs externally birds produce their egg perfect, fish imperfect, but the eggs of the latter complete their growth outside as has been said before. The reason is that the fish kind is very fertile; now it is impossible for many eggs to reach completion within the mother and therefore they lay them outside. They are quickly discharged, for the uterus of externally oviparous fishes is near the generative passage. While the eggs of birds are two-coloured, those of all fish are one-coloured. The cause of the double colour may be seen from considering the power of each of the two parts, the white and the yolk. For the matter of the egg is secreted from the blood [No bloodless animal lays eggs,] and that the blood is the material of the body has been often said already. The one part, then, of the egg is nearer the form of the animal coming into being, that is the hot part; the more earthy part gives the substance of the body and is further removed. Hence in all two-coloured eggs the animal receives the first principle of generation from the white (for the vital principle is in that which is hot), but the nutriment from the yolk. Now in animals of a hotter nature the part from which the first principle arises is separated off from the part from which comes the nutriment, the one being white and the other yellow, and the white and pure is always more than the yellow and earthy; but in the moister and less hot the yolk is more in quantity and more fluid. This is what we find in lake birds, for they are of a moister nature and are colder than the land birds, so that the so-called 'lecithus' or yolk in the eggs of such birds is large and less yellow because the white is less separated off from it. But when we come to the ovipara which are both of a cold nature and also moister (such is the fish kind) we find the white not separated at all because of the small size of the eggs and the quantity of the cold and earthy matter; therefore all fish eggs are of one colour, and white compared with yellow, yellow compared with white. Even the wind-eggs of birds have this distinction of colour, for they contain that out of which will come each of the two parts, alike that whence arises the principle of life and that whence comes the nutriment; only both these are imperfect and need the influence of the male in addition; for wind-eggs become fertile if impregnated by the male within a certain period. The difference in colour, however, is not due to any difference of sex, as if the white came from the male, the yolk from the female; both on the contrary come from the female, but the one is cold, the other hot. In all cases then where the hot part is considerable it is separated off, but where it is little it cannot be so; hence the eggs of such animals, as has been said, are of one colour. The semen of the male only puts them into form; and therefore at first the egg in birds appears white and small, but as it advances it is all yellow as more of the sanguineous material is continually mixed with it; finally as the hot part is separated the white takes up a position all round it and equally distributed on all sides, as when a liquid boils; for the white is naturally liquid and contains in itself the vital heat; therefore it is separated off all round, but the yellow and earthy part is inside. And if we enclose many eggs together in a bladder or something of the kind and boil them over a fire so as not to make the movement of the heat quicker than the separation of the white and yolk in the eggs, then the same process takes place in the whole mass of the eggs as in a single egg, all the yellow part coming into the middle and the white surrounding it. We have thus stated why some eggs are of one colour and others of two.

Chapter 2 - The principle of the male is separated off in eggs at the point where the egg is attached to the uterus, and the reason why the shape of two-coloured eggs is unsymmetrical, and not perfectly round but sharper at one end, is that the part of the white in which is contained this principle must differ from the rest. Therefore the egg is harder at this point than below, for it is necessary to shelter and protect this principle. And this is why the sharp end of the egg comes out of the hen later than the blunt end; for the part attached to the uterus comes out later, and the egg is attached at the point where is the said principle, and the principle is in the sharp end. The same is the case also in the seeds of plants; the principle of the seed is attached sometimes to the twig, sometimes to the husk, sometimes to the pericarp. This is plain in the leguminous plants, for where the two cotyledons of beans and of similar seeds are united, there is the seed attached to the parent plant, and there is the principle of the seed.

A difficulty may be raised about the growth of the egg; how is it derived from the uterus? For if animals derive their nutriment through the umbilical cord, through what do eggs derive it? They do not, like a scolex, acquire their growth by their own means. If there is anything by which they are attached to the uterus, what becomes of this when the egg is perfected? It does not come out with the egg as the cord does with animals; for when its egg is perfected the shell forms all round it. This problem is rightly raised, but it is not observed that the shell is at first only a soft membrane, and that it is only after the egg is perfected that it becomes hard and brittle; this is so nicely adjusted that it is still soft when it comes out (for otherwise it would cause pain in laying), but no sooner has it come out than it is fixed hard by cooling, the moisture quickly evaporating because there is but little of it, and the earthy part remaining. Now at first a certain part of this membrane at the sharp end of eggs resembles an umbilical cord, and projects like a pipe from them while they are still small. It is plainly visible in small aborted eggs, for if the bird be drenched with water or suddenly chilled in any other way and cast out the egg too soon, it appears still sanguineous and with a small tail like an umbilical cord running through it. As the egg becomes larger this is more twisted round and becomes smaller, and when the egg is perfected this end is the sharp end. Under this is the inner membrane which separates the white and the yolk from this. When the egg is perfected, the whole of it is set free, and naturally the umbilical cord does not appear, for it is now the extreme end of the egg itself.

The egg is discharged in the opposite way from the young of vivipara; the latter are born head-first, the part where is the first principle leading, but the egg is discharged as it were feet first; the reason of this being what has been stated, that the egg is attached to the uterus at the point where is the first principle.

The young bird is produced out of the egg by the mother's incubating and aiding the concoction, the creature developing out of part of the egg, and receiving growth and completion from the remaining part. For Nature not only places the material of the creature in the egg but also the nourishment sufficient for its growth; for since the mother bird cannot perfect her young within herself she produces the nourishment in the egg along with it. Whereas the nourishment, what is called milk, is produced for the young of vivipara in another part, in the breasts, Nature does this for birds in the egg. The opposite, however, is the case to what people think and what is asserted by Alcmaeon of Crotona. For it is not the white that is the milk, but the yolk, for it is this that is the nourishment of the chick, whereas they think it is the white because of the similarity of colour.

The chick then, as has been said, comes into being by the incubation of the mother; yet if the temperature of the season is favourable, or if the place in which the eggs happen to lie is warm, the eggs are sufficiently concocted without incubation, both those of birds and those of oviparous quadrupeds. For these all lay their eggs upon the ground, where they are concocted by the heat in the earth. Such oviparous quadrupeds as do visit their eggs and incubate do so rather for the sake of protecting them than of incubation.

The eggs of these quadrupeds are formed in the same way as those of birds, for they are hard-shelled and two-coloured, and they are formed near the hypozoma as are those of birds, and in all other respects resemble them both internally and externally, so that the inquiry into their causes is the same for all. But whereas the eggs of quadrupeds are hatched out by the mere heat of the weather owing to their strength, those of birds are more exposed to destruction and need the mother-bird. Nature seems to wish to implant in animals a special sense of care for their young: in the inferior animals this lasts only to the moment of giving birth to the incompletely developed animal; in others it continues till they are perfect; in all that are more intelligent, during the bringing up of the young also. In those which have the greatest portion in intelligence we find familiarity and love shown also towards the young when perfected, as with men and some quadrupeds; with birds we find it till they have produced and brought up their young, and therefore if the hens do not incubate after laying they get into worse condition, as if deprived of something natural to them.

The young is perfected within the egg more quickly in sunshiny weather, the season aiding in the work, for concoction is a kind of heat. For the earth aids in the concoction by its heat, and the brooding hen does the same, for she applies the heat that is within her. And it is in the hot season, as we should expect, that the eggs are more apt to be spoilt and the so-called 'uria' or rotten eggs are produced; for just as wines turn sour in the heats from the sediment rising (for this is the cause of their being spoilt), so is it with the yolk in eggs, for the sediment and yolk are the earthy part in each case, wherefore the wine becomes turbid when the sediment mixes with it, and the like applies to the eggs that are spoiling because of the yolk. It is natural then that such should be the case with the birds that lay many eggs, for it is not easy to give the fitting amount of heat to all, but (while some have too little) others have too much and this makes them turbid, as it were by putrefaction. But this happens none the less with the birds of prey though they lay few eggs, for often one of the two becomes rotten, and the third practically always, for being of a hot nature they make the moisture in the eggs to overboil so to say. For the nature of the white is opposed to that of the yolk; the yolk congeals in frosts but liquefies on heating, and therefore it liquefies on concoction in the earth or by reason of incubation, and becoming liquid serves as nutriment for the developing chick. If exposed to heat and roasted it does not become hard, because though earthy in nature it is only so in the same way as wax is; accordingly on heating too much the eggs become watery and rotten, [if they be not from a liquid residue]. The white on the contrary is not congealed by frost but rather liquefies (the reason of which has been stated before), but on exposure to heat becomes solid. Therefore being concocted in the development of the chick it is thickened. For it is from this that the young is formed (whereas the yolk turns to nutriment) and it is from this that the parts derive their growth as they are formed one after another. This is why the white and the yolk are separated by membranes, as being different in nature. The precise details of the relation of the parts to one another both at the beginning of generation and as the animals are forming, and also the details of the membranes and umbilical cords, must be learnt from what has been written in the Enquiries; for the present investigation it is sufficient to understand this much clearly, that, when the heart has been first formed and the great blood-vessel has been marked off from it, two umbilical cords run from the vessel, the one to the membrane which encloses the yolk, the other to the membrane resembling a chorion which surrounds the whole embryo; this latter runs round on the inside of the membrane of the shell. Through the one of these the embryo receives the nutriment from the yolk, and the yolk becomes larger, for it becomes more liquid by heating. This is because the nourishment, being of a material character in its first form, must become liquid before it can be absorbed, just as it is with plants, and at first this embryo, whether in an egg or in the mother's uterus, lives the life of a plant, for it receives its first growth and nourishment by being attached to something else.

The second umbilical cord runs to the surrounding chorion. For we must understand that, in the case of animals developed in eggs, the chick has the same relation to the yolk as the embryo of the vivipara has to the mother so long as it is within the mother (for since the nourishment of the embryo of the ovipara is not completed within the mother, the embryo takes part of it away from her). So also the relation of the chick to the outermost membrane, the sanguineous one, is like that of the mammalian embryo to the uterus. At the same time the egg-shell surrounds both the yolk and the membrane analogous to the uterus, just as if it should be put round both the embryo itself and the whole of the mother, in the vivipara. This is so because the embryo must be in the uterus and attached to the mother. Now in the vivipara the uterus is within the mother, but in the ovipara it is the other way about, as if one should say that the mother was in the uterus, for that which comes from the mother, the nutriment, is the yolk. The reason is that the process of nourishment is not completed within the mother.

As the creature grows the umbilicus running the chorion collapses first, because it is here that the young is to come out; what is left of the yolk, and the umbilical cord running to the yolk, collapse later. For the young must have nourishment as soon as it is hatched; it is not nursed by the mother and cannot immediately procure its nourishment for itself; therefore the yolk enters within it along with its umbilicus and the flesh grows round it.

This then is the manner in which animals produced from perfect eggs are hatched in all those, whether birds or quadrupeds, which lay the egg with a hard shell. These details are plainer in the larger creatures; in the smaller they are obscure because of the smallness of the masses concerned.